

Anschlusssituation

Deckenkühlelemente WK-D-PP

Funktionsprinzip WK-D-PP

Flexible Anschlussschläuche

Deckenkühlelement zur einfachen Kombination mit handelsüblichen Metalldecken

Deckenkühlelement für den verdeckten Einsatz in abgehängte, vorrangig geschlossene Metalldecken zur Abführung von inneren thermischen Lasten

- Einsetzbar in allen handelsüblichen Metalldeckenplatten
- Einfache und schnelle Montage durch vollflächiges Hochleistungsklebeband auf dem Trägerblech, mit gleichzeitig hoher Leistungssicherung
- Komfortable Raumkühlung hinsichtlich der thermischen Behaglichkeit für den Nutzer
- Einsparung von Betriebskosten durch Abfuhr der thermische Lasten über das Medium Wasser, dadurch können Zuluftvolumenströme auf das hygienisch erforderliche Minimum reduziert werden
- Kombination mit Geothermie als kostengünstige und nachhaltige Energiequelle möglich
- Einfaches Handling. Der bauseitige Anschluss erfolgt üblicherweise an ein Kühlwassernetz mit einer Wasservorlauftemperatur ≥ 16 ° C

Optionale Ausstattung und Zubehör

- Flexible Verbindungsschläuche der Serie FS
- Integration erforderlicher Deckenausschnitte durch Anpassung möglich
- Kombination mit verschiedenen Regelsystemen

Allgemeine Informationen	2	Bestellschlüssel	g
- unktion	3	Abmessungen	10
Гесhnische Daten	6	Einbaudetails	12
Schnellauslegung	6	Legende	13
Ausschreibungstext	8		

Allgemeine Informationen

Anwendung

- Deckenkühlelemente WK-D-PP sind zur Kombination mit allen geschlossenen Metalldecken geeignet
 - Ausgenommen perforierter Metalldeckenplatten ohne Akustikvlies
- Für Raumhöhen ab 2,60 m, vorzugsweise bis 4,0 m Raumhöhe
- Nutzung von energetischen Vorteilen des Mediums Wasser zum Kühlen/Heizen aufgrund der hohen spezifischen Wärmekapazität
- Abführung spezifischer Wärmelasten durch Strahlungsaustausch und Konvektion (Kühlfall), Behaglichkeitssteigerung
- Besonders behagliche Raumtemperierung insbesondere im Kühlfall durch gleichmäßige Temperaturausbreitung
- Energieeinsparungen bei der Kälte-/ und Wärmeerzeugung durch geringes Temperaturniveau bei den Wassertemperaturen
- Einsparung von Transportenergie bzw. beim Lufttransport durch Reduzierung des Luftvolumenstroms auf die Mindestfrischluftrate

Besondere Merkmale

- Einfache nicht sichtbare Integration in allen handelsüblichen Metalldecken möglich
- Werkzeuglose Montage durch Hochleistungsklebeband
- Hohe Leistungssicherheit durch dauerhafte Verbindung zur Deckenplatte
- Die Deckenkühlelemente ermöglichen durch unterschiedliche Mäander- und Anschlussvarianten eine ideale Anbindung sowie flachen Aufbau vor Ort
- Leistungsanpassung durch unterschiedliche Mäanderteilungen möglich
- Ausschnitte für Integration von z.B. Einbauten möglich

Nenngrößen

- L: 600 mm 1800 mm (Maß der Deckenplatte)
 - Zwischenmaßreihe in Schritten von 50 mm möglich
- B: 300, 400, 500, 600, 625 mm (Maß der Deckenplatte)
- weitere Anpassungen an Deckenplattenbreiten sind möglich
- H: Maß bis Oberkante Rohr maximal 50 mm

Ausführung

Mäandervariante

- G: gerade Mäanderanzahl
- GP: gerade Mäanderanzahl, erhöhte Leistung (Deckenplattenbreiten ab 500mm)
- UL: ungerade Mäanderanzahl, links
- UR: ungerade Mäanderanzahl, rechts
- UE: ungerade Mäanderanzahl, einseitig (für abklappbare Deckenplatten)

Anschluss

- 180: Wasseranschluß 180°
- 90: Wasseranschluß 90°

Bauteile und Eigenschaften

- Deckenkühlelemente aus Aluminium (AIMg3)
 - Vollflächige Wärmeübertragung
 - Perforiertes Trägerlochblech (AlMg3) für akustische Wirksamkeit in Kombination mit perforierten Deckenplatten
 - Einfache Montage durch großflächige Verklebung
- Hochleistungsklebeband
 - Zur werkzeuglosen Verbindung zwischen Deckenplatte und Kühlelement
 - Garantiert hohe Leistungssicherheit durch dauerhafte Verbindung
- Kupferrohrmäander (Cu)
 - Ausführung als D-Rohr zur Leistungssteigerung
 - Rohranschlüsse kalibriert mit Stützhülsen, optimal für flexible Anschlussschläuche

Materialien und Oberflächen

- Hochleistungsklebeband
- Oberfläche ähnlich RAL9005
- Trägerblech aus Aluminium (AlMg3)
- Wärmeleitschienen aus Aluminium (AlMg3)
- Rohrmäander aus Kupfer (Cu)

Konstruktionsmerkmale

- Einteiliges Deckenkühlelement aus großformatigem Aluminiumträgerblech
- Kupferrohrmäander als D-Rohr mit Wärmeleitschienen durch patentierte WLT®Technik aufgebracht
- Perforation des Trägerbleches zwischen den Profillamellen
- Trägerblech zur Metalldeckenplatte mit speziellen Hochleistungsklebeband

Normen und Richtlinien

- Kühlleistung nach DIN EN 14240
- Heizleistungsangaben in Anlehnung an DIN EN 14037, Teil 5
- DIN EN 12449: Kupfer und Kupferlegierungen Nahtlose Rundrohre zur allgemeinen Verwendung

Instandhaltung

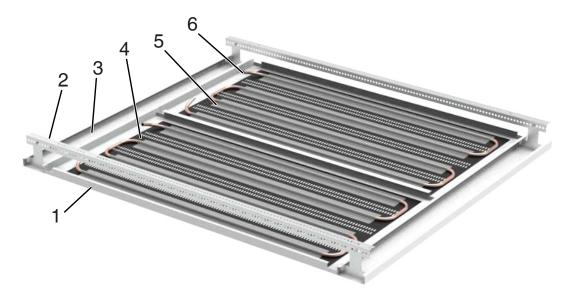
 Wartungsarm, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt

Ergänzende Produkte

- Flexible Anschluss-/Verbindungsschläuche Serie FS
- Unterschiedliche Regelungskombinationen mit LWS Regelung oder X-AIRCONTROL möglich, wie z.B. Ventile, Ventilantriebe, Taupunktfühler, Fensterkontakte, usw.

Funktion

Allgemein:

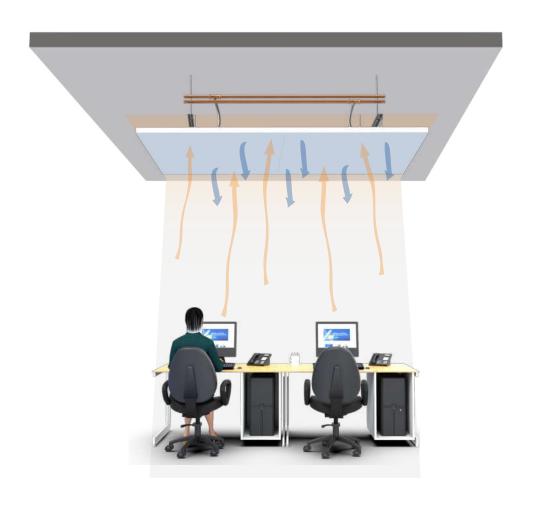

Kühldecken und Kühldeckensegel nehmen an ihren Oberflächen Wärme aus dem Raum auf und übertragen sie an das Transportmedium Wasser. Kühldecken sind in der Regel vollflächige abgehängte Decken, die nach dem großflächigen Strahlungsprinzip wirken. Kühldeckensegel bestehen z.B. aus Kühlpaneelen in einer offenen Konstruktion mit Zwischenräumen.

Strahlungskühldecken:

Strahlungskühldecken gehören zu den passiven Kühlsystemen. Die Wärmeübertragung erfolgt durch Strahlung und Konvektion, deren Anteile sich durch den Aufbau des Kühldeckensystems, Strahlungskühldecke oder Konvektionskühldecken, unterscheiden. Bei der Variante der Strahlungskühldecken handelt es sich meistens um geschlossene Deckenflächen, bei der ein Strahlungsanteil bis ca. 60 % beträgt. Die restlichen Anteile erfolgen über die freie Konvektion.

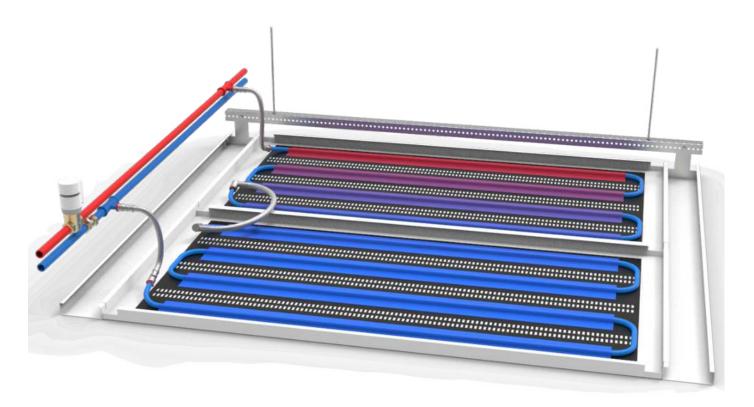
Die Kühlelemente WK-D-PP können im Bereich von geschlossenen Metalldecken in allen marktüblichen Ausführungen zur gleichmäßigen Temperierung von Räumen eingesetzt werden. Hierbei findet zwischen den Oberflächen mit unterschiedlichen Temperaturen eine Wärmeübertragung von den warmen zu den kälteren Körpern statt. Die Raumluft wird an den mit Kühlelementen ausgestatteten Metalldeckenoberflächen abgekühlt und strömt mit reduzierter Temperatur und niedrigen Geschwindigkeiten in den Aufenthaltsbereich. Die Deckenkühlelemente WK-D-PP werden auf der Rückseite der Deckenplatten fast vollflächig eingeklebt (aktivierter Deckenanteil). Die Deckenkühlelemente werden in Abhängigkeit der Deckenplattengröße zu einzelnen Wasserkreisen zusammengefasst, die für den Abtransport der Wärmelasten zuständig sind. Je nach Anteil der mit Deckenkühlelementen ausgestatteten Deckenbereiche wird der sogenante Belegungsgrad definiert. Auf Grund von Einbauten wie Leuchten, Luftdurchlässen und der Unterkonstruktion der Decke selber, ist ein 100% Belegungsgrad nicht möglich.

Schematische Darstellung WK-D-PP



- 1 Deckenplatte*
- 2 Unterkonstruktion Decke*
- 3 Unterkonstruktion Decke / z.B. Bandraster*
- 4 Trägerblech Kühlelement
- 5 Wärmeleitschiene
- 6 Kupferrohrmäander
- *bauseitiger Lieferumfang

Funktionsprinzip WK-D-PP



Funktionsprinzip WK-D-PP

WK-D-PP Temperaturverlauf kühlen

WK-D-PP Temperaturverlauf kühlen

Technische Daten

Länge	600 - 1800 mm
Höhe	50 mm
Breite	300, 400, 500, 600, 625 mm
Normkühlleistung DIN EN 14240 (Δt 8 K)	66 bis 87 W/m²
Kühlleistung (Δt 10 K)	84 bis 110 W/m²
Heizleistung (Δt 15 K)	bis 118 W/m ²
Heizleistung (Δt 30 K)	bis 246 W/m²
Maximaler Betriebsdruck wasserseitig	6 bar
Maximale Betriebstemperatur wasserseitig	50 °C

Kühl-/Heizleistungen in Abhängigkeit von Δt und der Mäandervariante.

Bei der Funktion Heizen sollten wegen der Behaglichkeit keine Oberflächentemperaturen > 35 °C gewählt werden.

Maximaler Betriebsdruck und maximale Betriebstemperatur gelten in Kombination mit flexiblen Schläuchen.

Bei dem Heizen mit "Kühldecken" kann nur der Strahlungsanteil betrachtet werden.

Bei der Auslegung eines Kühldeckensystems wird wegen der Vergleichbarkeit der Ergebnisse die Verwendung der Normkühlleistungen (φw,c,a) nach DIN EN 14240 NICHT empfohlen. Es sollte mit der spezifischen, auf die belegbare Deckenplattenfläche (φw,c,p) bezogenen Kühlleistung gerechnet werden, die sich auf die aktive Fläche eines Kühldeckensystems beziehen

Nur so kann durch den möglichen Deckenbelegungsgrad die erreichbare Kühlleistung einfach ermittelt werden und mit der planerisch geforderten Kühlleistung pro m2 -Bodenfläche verglichen werden.

Schnellauslegung

Schnellauslegung Normkühlleistungen nach DIN EN 14240 (Δt = 8K)

Beispielhafte Kühlleistungen für unterschiedliche Δt , bezogen auf beispielhafte Stahldeckenplattenabmessungen

	L	В	А	Δt = 8 K		Δ t = 10 K	
Variante	mm		m2	φw, c, a [W/m²]	φw, c, p [W/m²]	φw, c, a [W/m²]	φw, c, p [W/m²]
G	600	600	0.36	66	56	84	71
GP	600	600	0.36	71	62	89	78
G	625	625	0.39	69	56	87	71
UL/UR/UE	1200	600	0.72	75	72	94	91
G	1200	600	0.72	77	68	97	86
GP	1200	600	0.72	82	75	103	94
G	1500	600	0.9	79	71	100	89
G	1800	600	1.08	80	72	101	91
G	1200	500	0.6	87	58	110	73
UL/UR/UE	1200	500	0.6	76	66	96	83
GP	1200	500	0.6	72	69	91	88
G	1200	400	0.48	74	61	94	78
UL/UR/UE	1200	400	0.48	78	68	99	86
G	1200	300	0.36	76	68	96	85
UL/UR/UE	1200	300	0.36	81	74	103	94

Leistungsangaben gelten ohne Einflussfaktoren der gewählten Lüftungsvarianten.

Durch den Einsatz von Aluminiumdeckenplatten werden höhere Normleistungen erreicht.

Kühlen

Wasservorlauftemperatur tw, s, c	16 °C
Wasserrücklauftemperatur tw, r, c	18 °C
Mittlere Wassertemperatur tw, m, c	17 °C
Raumtemperatur für Δt = 8 K (DIN EN 14240) tr, c = tAN	25 °C
Raumtemperatur für unterschiedliche Kühlleistungen tr, c = tAN	variabel °C
Temperaturdifferenz Raum zu mittlerer Wassertemperatur Δt = tr, c - tw, m, c	siehe oben K

Schnellauslegung Heizleistungen

Beispielhafte Heizleistungen für unterschiedliche Δt, bezogen auf beispielhafte Stahldeckenplattenabmessungen

	L	В	Α	Δ t =	15 K	∆ t =	30 K
Variante	te mm		m2	φw, c, a [W/m²]	φw, c, p [W/m²]	φw, c, a [W/m²]	φw, c, p [W/m²]
G	600	600	0.36	90	76	188	158
GP	600	600	0.36	96	84	200	175
G	625	625	0.39	94	77	196	159
UL/UR/UE	1200	600	0.72	106	97	220	201
G	1200	600	0.72	104	92	217	191
GP	1200	600	0.72	111	102	232	212
G	1500	600	0.9	107	95	223	198
G	1800	600	1.08	109	98	227	203
G	1200	500	0.6	118	78	246	163
UL/UR/UE	1200	500	0.6	104	90	216	187
GP	1200	500	0.6	98	94	203	195
G	1200	400	0.48	101	84	210	174
UL/UR/UE	1200	400	0.48	107	93	222	192
G	1200	300	0.36	103	91	215	190
UL/UR/UE	1200	300	0.36	111	102	230	210

Leistungsangaben gelten ohne Einflussfaktoren der gewählten Lüftungsvarianten

Heizen

Wasservorlauftemperatur tw, s, h	42 °C
Wasserrücklauftemperatur tw, r, h	32 °C
Mittlere Wassertemperatur tw, m, h	37 °C
Raumtemperatur tr, h = tAN	22 °C
Temperaturdifferenz Raum zu mittlerer Wassertemperatur Δt = tr, h - tw, m, h, Beispiel	15 K

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts.

Ausschreibungstext

Deckenkühlelemente zur einfachen Kombination mit bauseitigen Metalldeckenplatten in allen marktgängigen Ausführungen. Die Deckenkühlelemente bestehen aus einem Kupferrohrmäander, der mittels speziellen Wärmeleitblechen auf dem Trägerblech verbunden ist. Um die höchste Qualität bei der Wärmeleitung zu erreichen, erfolgt diese Verbindung mittels einer patentierten WLT®Technik. Das Trägerblech ist mit einem Hochleistungsklebeband zur einfachen und werkzeuglosen Verbindung mit der bauseitigen Deckenplatte ausgestattet. Durch die vollflächige Verklebung wird ein optimaler Wärmeübergang über die Kontaktfläche dauerhaft gesichert. Die Trägerbleche sind den vorgesehenen Deckenplattenabmessungen angepasst.

Optimierte Kühlleistungen durch Anpassung der Mäanderanzahl und Mäanderteilung möglich. Die Mäander werden, in Abhängigkeit von den bauseitigen Metalldeckenplatten, in verschiedenen Anschlussvarianten ausgeführt. Die Rohrenden der Deckenkühlelemente sind zur Kühlelementinnenseite gebogen, um geringe Einbauhöhen zu realisieren. Verbindungen untereinander und zu den Hauptverrohrungsleitungen erfolgen vorzugsweise mit flexiblen Schläuchen. In Abhängigkeit von den maximal gewünschten Druckverlusten und dem Deckenaufbau können mehrere Deckenkühlelemente zu einem Kühlkreis zusammengeschaltet werden.

Besondere Merkmale

- Einfache nicht sichtbare Integration in allen handelsüblichen Metalldecken möglich
- Werkzeuglose Montage durch Hochleistungsklebeband
- Hohe Leistungssicherheit durch dauerhafte Verbindung zur Deckenplatte
- Die Deckenkühlelemente ermöglichen durch unterschiedliche Mäander- und Anschlussvarianten eine ideale Anbindung sowie flachen Aufbau vor Ort
- Leistungsanpassung durch unterschiedliche Mäanderteilungen möglich
- Ausschnitte für Integration von z.B. Einbauten möglich

Materialien und Oberflächen

- Hochleistungsklebeband
- Oberfläche ähnlich RAL9005
- Trägerblech aus Aluminium (AlMg3)
- Wärmeleitschienen aus Aluminium (AlMg3)
- Rohrmäander aus Kupfer (Cu)

Ausführung

Mäandervariante

- · G: gerade Mäanderanzahl
- GP: gerade Mäanderanzahl, erhöhte Leistung (Deckenplattenbreiten ab 500mm)
- UL: ungerade Mäanderanzahl, links
- UR: ungerade Mäanderanzahl, rechts
- UE: ungerade Mäanderanzahl, einseitig (für abklappbare Deckenplatten)

Anschluss

- 180: Wasseranschluß 180°
- 90: Wasseranschluß 90°

Technische Daten

- Länge: 600 mm 1800 mm (Maß der Deckenplatte)
 - Zwischenmaßreihe in Schritten von 50 mm möglich
- Breite: 300, 400, 500, 600, 625 mm (Maß der Deckenplatte)
- Höhe: 50 mm
- Kühlleistung DIN EN 14240 (Δt 8 K): bis 87 W/m2
- Kühlleistung (Δt 10 K): bis 110 W/m2
- Heizleistung (Δt 15 K): bis 118 W/m2
- Heizleistung (Δt 30 K): bis 246 W/m2
- Maximaler Betriebsdruck wasserseitig: 20 bar (Begrenzung in Kombination mit flexiblen Schläuche, 6 bar)
- Maximale Betriebstemperatur wasserseitig: 75 °C (in Kombination mit flexiblen Schläuchen, 50 °C)

Bestellschlüssel

1 Serie

WK-D-PP Kühldeckenelement

2 Mäandervariante

G gerade Mäanderanzahl

GP gerade Mäanderanzahl, erhöhte Leistung

(Deckenplattenbreiten ab 500 mm)

UL ungerade Mäanderanzahl, links

UR ungerade Mäanderanzahl, rechts

UE ungerade Mäanderanzahl, einseitig (für abklappbare

Deckenplatten)

3 Anschluss

90 Wasseranschluss 90° 180 Wasseranschluss 180°

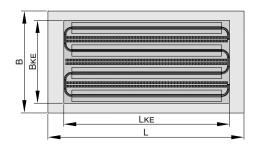
4 Deckenplattenlänge [mm]

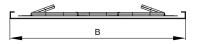
600 - 1800

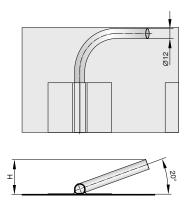
Deckenkühlelemente können den Deckenplattenlängen in 50 mm-Schritten angepasst werden

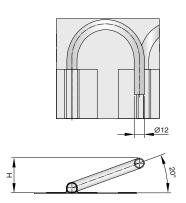
5 Deckenplattenbreite [mm]

300, 400, 500, 600, 625

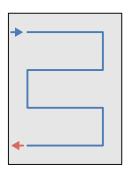

Bestellbeispiel: WK-D-PP-G-90/1200×600


Serie	WK-D-PP
Mäandervariante	gerade Mäanderanzahl
Anschluss	Wasseranschluss 90°
Deckenplattenlänge [mm]	1200
Deckennlattenbreite [mm]	600

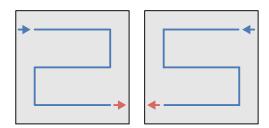


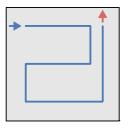


Abmessungen


90 Wasseranschluß 90°

180 Wasseranschluß 180°




G: gerade Mäanderzahl GP: gerade Mäanderzahl, erhöhte Leistung

UL: ungerade Mäanderzahl, Wasservorlauf links
UR: ungerade Mäanderzahl, Wasservorlauf rechts

UE: ungerade Mäanderanzahl, einseitig (für abklappbare Deckenplatten)

Abmessungen mm

 tomocounger min						
Länge Deckenplatte L	600-1800	600-1800	600-1800	600-1800	600-1800	
Länge Kühlelement L _{KF}	L-50	L-50	L-50	L-50	L-50	
Breite Deckenplatte B	300	400	500	600	625	
Breite Kühlelement B _{KE}	275	350	450	550	550	

Gewicht

6 bis 8 kg / m2 Deckenkühlelement (je nach Ausführung, mit Wasser)

Einbaudetails

WK-D-PP Einbaubeispiel


WK-D-PP in Metalldeckenplatte

WK-D-PP in Metalldeckenplatte

WK-D-PP Thermografie

Einbau und Inbetriebnahme

- Alle Arbeiten im Zusammenhang mit der Montage der Kühlelemente, den hydraulischen Anschlüssen und der Inbetriebnahme sind durch entsprechendes Fachpersonal durchzuführen
- Bei der Auswahl des wasserseitigen Anschlusses ist zu gewährleisten, dass ein Sauerstoffeintrag in das Wassersystem verhindert wird, da dieser zu Korrosion führen kann.
- Die Einhaltung der Füll- und Ergänzungswasserqualität gemäß VDI 2035 Blatt 1 ist zu berücksichtigen.
- Detaillierte Angaben zum Einbau und Inbetriebnahme entnehmen Sie bitte unseren Montagehinweisen

Legende

L [mm]

Deckenplattenlänge

 L_{KE} [mm]

Kühlelementlänge (L - 50 mm)

B [mm]

Deckenplattenbreite

B_{KE} [mm]

Kühlelementbreite

Die tatsächliche Kühlelementbreite ist abhängig von der Mäandervariante und Deckenplattenbreite.

Das Kühlelement ist in der Breite kleiner als das Bestellmaß (Deckenplattenbreite).

H [mm]

Kühlelementhöhe

q_{v. w. c} [I/h]

Wasservolumenstrom Kühlen

 $q_{v, w, h}$ [I/h]

Wasservolumenstrom Heizen

Φ_w _c [W]

Gesamtkühlleistung bezogen auf aktive Kühlelementfläche

tws.[°C]

Wasservorlauftemperatur

t_{w, r, c} [°C]

Wasserrücklauftemperatur

t_{w, m, c} [°C]

mittlere Wassertemperatur (tw, m, c = tw, s, c + tw, r, c/2)

 $t_{r,c}$ [°C]

Raumtemperatur Kühlen

t_{r, h} [°C]

Raumtemperatur Heizen

 $t_{r, c}/t_{r, h}$ [°C]

Ansaugtemperatur im Deckenbereich

 $\Delta t = t_{r,c} - t_{w,m,c} [K]$

Temperaturdifferenz zwischen Raumtemperatur und mittlerer Wassertemperatur

Δp, _{w. c} [Pa]

Druckverlust für einen Wasserkreislauf Kühlen (hier können meherer Elemente kombiniert werden)

Δp, _{w, h} [Pa]

Druckverlust für einen Wasserkreislauf Heizen (hier können meherer Elemente kombiniert werden)

 $\phi_{w. c. a} [W/m^2]$

spezifische Kühlleistung bezogen auf die aktive Fläche

 $\phi_{\text{w, c, p}} \; [\text{W/m}^{\text{2}}]$

spezifische Kühlleistung bezogen auf die Deckenplattenfläche

 $\phi_{w,\,c,\,i}\left[W/m^2\right]$

spezifische Kühlleistung bezogen auf die installierte Fläche

 $\phi_{w,c,t}$ [W/m²]

spezifische Kühlleistung bezogen auf die Raumfläche

 $A_t [m^2]$

Prüfraumfläche

 A_i [m^2]

Installationsfläche

 $A_{_{D}}$ [m²]

Deckenplattenfläche

 A_a [m^2]

aktive Kühlelementfläche

